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A Proofs

A.1 The j to j + 1 LATE Is Identified by the Wald Estimator

Proposition 1. Assume the model from the text. Consider the set of observed and un-

observed characteristics in the ordered choice model that would result in (i) selection into

treatment level j when not receiving the instrument, (ii) treatment level j or j + 1 with the

instrument, and (iii) a positive probability of selection into treatment level j + 1 with the

instrument. In the text we define this identification support set first using

Ωj ≡

{
i ∈ Ω

∣∣ D0(i) = j, D1(i) ∈ {j, j + 1}, Pr(D1(i) = j + 1) > 0

}
,

and then

SM
j ≡

{ (
µ(xi), UD(i)

) ∣∣ i ∈ Ωj

}
.

Applying the Wald estimator to the subsample of experimental and control households in SM
j

identifies the j to j + 1 transition-specific LATE:

E
[
Y
∣∣ ZM = 1, (µ(X), UD) ∈ SM

j

]
− E

[
Y
∣∣ ZM = 0, (µ(X), UD) ∈ SM

j

]

E
[
D
∣∣ ZM = 1, (µ(X), UD) ∈ SM

j

]
− E

[
D
∣∣ ZM = 0, (µ(X), UD) ∈ SM

j

] = △LATE
j,j+1 (ZM).
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Proof. Recall that WM
Z (i) is an indicator for individual i’s counterfactual voucher take up.

When offered a voucher (ZM
i = 1), a household in SM

j can possibly respond with any of the

following mutually exclusive options:

1 Not use the MTO voucher and remain in a neighborhood of quality j; we denote this set

of households by SM
j (WM

1 (i) = 0, D(i) = j).

2 Move with the MTO voucher, but not to a higher-quality neighborhood, denoted by

SM
j (WM

1 (i) = 1, D(i) = j).1

3 Move with the MTO voucher to a higher quality neighborhood, denoted by SM
j (WM

1 (i) =

1, D(i) = j + 1).

We can then classify households into non-compliers and compliers as follows:

NCM
j = SM

j (WM
1 (i) = 0, D(i) = j) ⊔ SM

j (WM
1 (i) = 1, D(i) = j)

CM
j = SM

j (WM
1 (i) = 1, D(i) = j + 1),

where ⊔ represents a disjoint union. We denote the probability of being a complier as π(CM
j ).

The Wald estimator applied to the subsample of experimental and control households in

SM
j identifies the j to j + 1 transition-specific LATE for compliers:

E
[
Y
∣∣ ZM = 1, (µ(X), UD) ∈ SM

j

]
− E

[
Y
∣∣ ZM = 0, (µ(X), UD) ∈ SM

j

]

E
[
D
∣∣ ZM = 1, (µ(X), UD) ∈ SM

j

]
− E

[
D
∣∣ ZM = 0, (µ(X), UD) ∈ SM

j

]

=

E

(
Yj+1 − Yj

∣∣ (µ(X), UD,W
M
1 ) ∈ CM

j

)
π(CM

j )

π(CM
j )

(1)

= E
[
Yj+1 − Yj

∣∣ (µ(X), UD,W
M
1 ) ∈ CM

j

]

≡ △LATE
j,j+1 (ZM),

1One possibility generating this case is that the household moves to a low-poverty neighborhood of the
same quality. Another possibility is that because the interim study was conducted four to seven years after
randomization, households could have moved more than once, with their final move being to a neighborhood
of quality level j.
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where the equality in Equation 1 is derived as follows,

E
[
Y
∣∣ ZM = 1, (µ(X), UD) ∈ SM

j

]
− E

[
Y
∣∣ ZM = 0, (µ(X), UD) ∈ SM

j

]

=

{
E
[
Yj+1

∣∣ (µ(X), UD ,WM
1 ) ∈ CM

j

]
π(CM

j ) + E
[
Yj

∣∣ (µ(X), UD,W
M
1 ) ∈ NCM

j

]
(1− π(CM

j ))

}

−

{
E
[
Yj

∣∣ (µ(X), UD,W
M
1 ) ∈ CM

j

]
π(CM

j ) + E
[
Yj

∣∣ (µ(X), UD ,WM
1 ) ∈ NCM

j

]
(1− π(CM

j ))

}

=

(
E
[
Yj+1

∣∣ (µ(X), UD ,WM
1 ) ∈ CM

j

]
− E

[
Yj

∣∣ (µ(X), UD ,WM
1 ) ∈ CM

j

])
π(CM

j )

+

(
E
[
Yj

∣∣ (µ(X), UD,W
M
1 ) ∈ NCM

j

]
− E

[
Yj

∣∣ (µ(X), UD ,WM
1 ) ∈ NCM

j

])
(1− π(CM

j ))

=

(
E
[
Yj+1

∣∣ (µ(X), UD ,WM
1 ) ∈ CM

j

]
− E

[
Yj

∣∣ (µ(X), UD ,WM
1 ) ∈ CM

j

])
π(CM

j )

and likewise,

E
[
D
∣∣ ZM = 1, (µ(X), UD) ∈ SM

j

]
− E

[
D
∣∣ ZM = 0, (µ(X), UD) ∈ SM

j

]

=

{
(j + 1)π(CM

j ) + (j)(1− π(CM
j ))

}
−

{
(j)π(CM

j ) + (j)(1− π(CM
j ))

}

=

[
(j + 1)− j

]
π(CM

j ) +

[
j − j

](
1− π(CM

j )
)

= π(CM
j ).

Note that this entire identification strategy is predicated on identifying Vi, as it is required

for identifying SM
j and applying the Wald estimator to households in this set.
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A.2 Equivalence of the Unobserved Component of Choice Speci-

fied Under Discrete and Continuous Models of Neighborhood

Quality

Suppose that we observe a continuous measure of neighborhood quality q ∈ [0, 1]. If we

partition quality to generate discrete treatment levels, there will be an associated ordered

choice model. We can estimate the unobserved component V of the ordered choice model

using the identification strategy in the text.

We interpret estimates obtained in this way to be estimates of the same random variable

V regardless of the partition of quality used in estimation. We justify this interpretation

by showing that a sequence of {V n(i)}∞n=1 derived from a sequence of refinements of quality

converging in the norm will converge to the random variable V (i) from a continuous model

(Corollary 2).

In practice, this result allows us to move freely between different partitions of quality when

estimating the ordered choice model and when estimating causal effects on outcomes. This

means that we use one partition of quality when estimating the ordered choice model, using

the sample population to determine where cutpoints are located so as to improve estimation.

We use a different partition of quality when estimating causal effects on outcomes, placing

cutpoints so as to characterize meaningful margins of neighborhood characteristics.

Before stating our results, we will first provide some relevant notation and definitions.

Let

MB(q) = µ(xi)− C(q)− V (i) = 0 (2)

be the First Order Condition determining neighborhood quality selection q in a continuous

model of choice, where all variables are defined as in the text. Consider a partition of the

continuous quality measure q ∈ [α, 1] ⊂ (0, 1] into K discrete levels:

Pq(K) = {α = q0, q1, . . . , qK−1, qK = 1} .

Partition Pq(K) defines the discrete treatment

DK =





1 if q ∈ [q0, q1];

2 if q ∈ (q1, q2];
...

...
...

K if q ∈ (qK−1, qK ].

Given a continuous cost function C(q) : [α, 1] → B ⊂ R, partition Pq(K) implies a partition
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of the image of C

PC(K) = {C0, C1, . . . , CK−1, CK} ,

where Ck = C(qk).

Pq(K) and PC(K) define a partition of the closed interval [µ(xi)−CK , µ(xi)−C0] ⊂ R:

PV (K) = {µ(xi)− CK , . . . , µ(xi)− C0} .

The selection conditions for the discrete model of neighborhood quality choice associated

with the continuous model 2 and partition Pq(K) are:

DK(i) = k ⇐⇒ µ(xi)− C(qk) < V (i) ≤ µ(xi)− C(qk−1) for k = 1, . . . , K. (3)

Some definitions we use in our proof are as follows:

Partition-Specific Discrete Model: We say that the ordered choice model given by Con-

dition 3 is the Pq(K)-discrete model associated with the continuous choice model in

Equation 2.

Refinement of a Partition: Pq
n is a refinement of Pq(K0) if Pq(K0) ⊂ Pq

n, with ⊂ repre-

senting strict inclusion.

Sequence of Refinements of a Partition: {Pq
n}

∞
n=1

is a sequence of refinements of

Pq(K0) if Pq(K0) ⊂ Pq
1 and Pq

n−1 ⊂ Pq
n for n = 2, . . . ,∞. The nth refinement in

the sequence is denoted by Pq
n = {α = q0,n, q1,n, . . . , qNn,n = 1}, where Nn + 1 is the

cardinality of the refinement.

Norm of a Partition: The norm of Pq
n is maxk∈{1,...,Nn} |qk,n − qk−1,n|.

Convergence in the Norm: The norm of the refinements in the sequence {Pq
n}

∞
n=1

con-

verges to zero if

lim
n→∞

max
k∈{1,...,Nn}

|qk,n − qk−1,n| = 0. (4)
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Proposition 2. Let the Pq(K0)-discrete model be associated with the continuous choice

model in Equation 2. Define a sequence of refinements of Pq(K0) indexed by n, {Pq
n}

∞
n=1

,

such that the norm of the refinements converges to zero. The sequence of refinements of

PC(K0) generated by {Pq
n}

∞
n=1

also converges to zero in the norm.

Proof. We want to show that

lim
n→∞

max
k∈{1,...,Nn}

|C(qk,n)− C(qk−1,n)| = 0. (5)

This is equivalent to:

∀ ǫ > 0, ∃m∗ such that |C(qk,n)− C(qk−1,n)| < ǫ, ∀ k ∈ {1, . . . , Nn}, when n > m∗. (6)

We know that every continuous function on a closed and bounded interval is uniformly

continuous (Heine-Cantor Theorem, Aliprantis and Border (2006) Corollary 3.31). Thus,

C : [α, 1] → B ⊂ R satisfies:

∀ ǫ > 0, ∃ δ > 0 such that |q − p| < δ ⇒ |C(q)− C(p)| < ǫ, ∀ p, q ∈ [α, 1]. (7)

The condition that the norm of refinements in the series {Pq
n}

∞
n=1

converges to zero (condition

4) can be restated as

∀ δ > 0, ∃ n∗ such that |qk,n − qk−1,n| < δ, ∀ k ∈ {1, . . . , Nn}, when n > n∗. (8)

Take ǫ0 > 0. By uniform continuity of C(q) there exists δ(ǫ0) that satisfies

|C(q)− C(p)| < ǫ0, ∀ p, q ∈ [α, 1] whenever |q − p| < δ(ǫ0).

Given Condition 8, we can find n∗(δ(ǫ0)) that satisfies

|qk,n − qk−1,n| < δ(ǫ0), ∀ k ∈ {1, . . . , Nn}, when n > n∗(δ(ǫ0)).

Thus, given ǫ0, we can find m∗ = n∗(δ(ǫ0)) such that

|C(qk,n)− C(qk−1,n)| < ǫ0, ∀ k ∈ {1, . . . , Nn}, when n > m∗ = n∗(δ(ǫ0)),

which satisfies Condition 6.
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Corollary 1. The sequence of refinements of PV (K0) converges to zero in the norm if it is

generated by a sequence of partitions {Pq
n}

∞
n=1

that converges to zero in the norm.

Proof. By stating the definition and using the fact that taking the limit is compatible with

algebraic operations, we know that

lim
n→∞

(
max

k=1,...,Kn

∣∣∣∣[µ(xi)− C(qk−1,n)]− [µ(xi)− C(qk,n)]

∣∣∣∣
)

= lim
n→∞

(
max

k=2,...,K−1

∣∣C(qk,n)−C(qk−1,n)
∣∣
)
.

By Proposition 2, we know that the right hand side of this equation is equal to 0.

Corollary 2. For a sequence of partitions {Pq
n}

∞
n=1 that converges in the norm, a sequence

of {V n(i)}∞n=1 satisfying Equation 3 converges to V (i) in Equation 2.

Proof. By Equation 3 we know that for the V (i) in Equation 2,

V (i) ∈
(
µ(xi)− C(qk,n), µ(xi)− C(qk−1,n)

]
when DK(i) = k.

By construction, the V n(i) in our identification strategy is also in this same interval:

V n(i) ∈
(
µ(xi)− C(qk,n), µ(xi)− C(qk−1,n)

]
when DK(i) = k.

It follows that

lim
n→∞

( ∣∣V n(i)− V (i)
∣∣) ≤ lim

n→∞

(
max

k=1,...,Kn

∣∣∣∣[µ(xi)− C(qk−1,n)]− [µ(xi)− C(qk,n)]

∣∣∣∣
)
.

We know from Corollary 1 that the right hand side of this inequality is 0.
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A.2.1 Discussion of Intuition

Corollary 2 can be interpreted as the discrete choice conditions of Equation 3 converging

to the continuous first order condition of Equation 2. The implication for interpreting the

estimates in our model comes from the fact that in practice, V (i) is estimated from a given

partition of quality. Corollary 2 assures us that a sequence of V n(i)’s derived from a series

of refinements of that partition satisfying Condition 4 will converge to V (i) from the same

continuous model, regardless of the initial partition.

We now seek to add intuition to the link between the continuous and discrete models,

and to discuss how a distributional assumption on V can be seen as a normalization due to

the flexibility of the cost function. Suppose there is a continuous measure of neighborhood

quality q ∈ [α, 50] for arbitrary α > 0, and that there are two partitions into discrete levels

of quality, where under the first partition

Q3

i =





1 if qi ∈ [q0, q1] = [α, 10];

2 if qi ∈ (q1, q2] = (10, 40];

3 if qi ∈ (q2, q3] = (40, 50],

and under the second partition (a refinement of the first partition)

Q5

i =





I if qi ∈ [q0, qI ] = [α, 10];

II if qi ∈ (qI , qII ] = (10, 20];

III if qi ∈ (qII , qIII ] = (20, 30];

IV if qi ∈ (qIII , qIV ] = (30, 40];

V if qi ∈ (qIV , qV ] = (40, 50].

Focusing on observed characteristics for a particular realization X(i) = xi, we have that

Pr(q∗i > 40) = Pr(Q3

i = 3) = Pr(q∗i > q2) = Φ(µ(xi)− C2)

= Pr(Q5

i = V ) = Pr(q∗i > qIV ) = Φ(µ(xi)− CIV ).

Thus C2 = CIV , so the values at the common cutpoint/knot will be the same under both

partitions, with C(40) = C(40) = C2 = CIV . The same logic applies to see that

Pr(q∗i > 10) = Pr(Q3

i ≥ 2) = Pr(q∗i > q1) = Φ(µ(xi)− C1)

= Pr(Q5

i ≥ II) = Pr(q∗i > qI) = Φ(µ(xi)− CI).
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Thus we will likewise have C(10) = C(10) = C1 = CI . The partitions and cutpoints/knots

from this example are illustrated below.

q α

q0

10

q1

40

q2

50

qK

Q 1 2 3

q α

q0

10

qI

20

qII

30

qIII

40

qIV

50

qK

Q I II III IV V

V

f(v)

µ(x) − CIV µ(x)− CIII µ(x)− CII µ(x)− CI

µ(x) − C2 µ(x) − C1
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Figure 1 illustrates the relationship between the linear interpolation implied by the par-

titions Pq
3 and Pq

V along with C(q). The linear interpolation Cn(q) between C(qk,n) and

C(qk−1,n) for q ∈ (qk−1, qk) can be made to approximate the true continuous cost function

C(q) to an arbitrary degree of accuracy. That is, for all ǫ > 0, there exists some m∗ ∈ N

such that n > m∗ implies that the norm of the partition Pq
n is less than δǫ > 0. By the

uniform continuity of C(q), if C is increasing, then linear interpolation of Cn(q) implies that

|Cn(q) − C(q)| ≤ maxk∈{1,...,K} |C(qk,n) − C(qk−1,n)| ] < ǫ for all q ∈ [α, 50] when Cn(q) is

estimated using the partition Pq
n.

qα

q0
q0

10

q1
qI

20

qII

30

qIII

40

q2
qIV

50

q3
qV

Cost

2

1

0

-1

-2

-3

b

b

b

b

b
b C(q)

CV (q)

C3(q)

Figure 1: Approximating C(q) to Arbitrary Accuracy
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B Estimation Algorithm

The general estimation algorithm is as follows:

Step 1 Estimate the ordered choice model to obtain µ̂(xi), {Ĉk}, {γ̂S
k }, and {γ̂M

k }.

Step 2 Linearly interpolate to obtain Ĉ(q), γ̂S(q), and γ̂M(q). In the case of Ĉ(q),

Ĉ(q) = Ĉk + (q − qk)(
Ĉk+1 − Ĉk

qk+1 − qk
) for q ∈ (qk, qk+1).

Step 3 Estimate V̂ using the FOC

V̂ (i) = µ̂(xi)− Ĉ(q∗i ) + γ̂S(q∗i )z
S
i w

S
i + γ̂M(q∗i )z

M
i wM

i

and ÛD(i) via

ÛD(i) = Φ(V̂ (i)).

Step 4 Using the control group, find an area Âj ⊂ M × [0, 1] such that households with

(µ̂(xi), ûDi) ∈ Âj would select into neighborhood quality Di = j without any voucher.

Using the MTO voucher group, find the subset ÂM
j,j+1 for which some households would

select into neighborhood quality Di = j + 1 with an MTO voucher. The identification

support set is ŜM
j ≡ Âj ∩ ÂM

j,j+1.

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
u_

D

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
u_

D

−.5 −.25 0 .25 .5 .75 1 1.25 1.5 1.75
mu(X)

A_1 D=1 D=2 D=3 D=4

As a Function of Observables and Unobservables
Treatment Level Choices (Control Group)

(a) Control Group and Â1

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
u_

D

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
u_

D

−.5 −.25 0 .25 .5 .75 1 1.25 1.5 1.75
mu(X)

A^MTO_2 D=1 D=2 D=3 D=4

As a Function of Observables and Unobservables
Treatment Level Choices (MTO Voucher Holders)

(b) MTO Voucher Holders and ÂM
1,2

Figure 2: Selection into Treatment and Counterfactual Areas Â1 and ÂM
1,2

Step 5 Estimate the j to j +1 transition-specific LATE over ŜM
j using the Wald estimator

from Equation 1 applied to ŜM
j .
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Step 6 Bootstrap by repeating the following steps T times:

Step 6a Sample with replacement

Step 6b Repeat Step 1: Estimate the ordered choice model on the new sample

Step 6c Repeat Step 3: Calculate E[△̂LATE
j,j+1 (ZM)|(µ̂(xi), ûDi) ∈ ŜM

j ] on the new sam-

ple where the set ŜM
j maintains the definition determined in Step 2 for the original

sample

Construct standard errors using the T parameter estimates.
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C Specification of the Full Likelihood Function

C.1 A Simple Model Illustrating Identification

The only distributional assumption required to identify the parameters of the choice

model needed to identify LATE parameters is

V (i) ∼ N (0, 1). (9)

For the sake of exposition, we show this in a model with only the control and MTO groups;

the result extends trivially to the case with both standard Section 8 and experimental MTO

voucher groups. Recall that V (i) represents the unobserved cost for household i of moving

up in the absence of a voucher program and we use V M(i) to denote unobserved variables

influencing household i’s take up of the MTO voucher.

Assumptions about the joint distribution (V (i), V M(i)) are only invoked to understand

what predicts take up (by identifying parameters of the take-up model). To see why this is

the case, we introduce the random variables

ZM(i) : Ω → {0, 1}, the MTO voucher assignment; and

WM(i) : Ω → {0, 1}, an indicator for taking up the MTO voucher.

Observing the realizations of di, xi, z
M
i , and wM

i for all individuals, we have that

LL(θ) =
N∑

i=1

ln

(
Pr
(
di
∣∣xi, zMi , wM

i

))

=

N∑

i=1

K∑

k=1

1{di = k} ln

(
Pr
(
di = k

∣∣xi, zMi , wM
i

))

=

N∑

i=1

K∑

k=1

1{di = k} ln

( 1∑

ζ=0

1∑

ω=0

1{zMi = ζ, wM
i = ω} × Pr

(
di = k

∣∣xi, zMi = ζ, wM
i = ω

))
.

Our parametric specification of the ordered choice model in Equation 1 in the text along

with the normality assumption in Equation 9 allow us to write the choice probabilities as:

Pr
(
di = k | xi, z

M
i = 0, wM

i = 0
)
= Φ

(
µ(xi)−Ck−1

)
− Φ

(
µ(xi)− Ck

)

Pr
(
di = k | xi, z

M
i = 1, wM

i = 0
)
= Φ

(
µ(xi)−Ck−1

)
− Φ

(
µ(xi)− Ck

)

Pr
(
di = k | xi, z

M
i = 0, wM

i = 1
)
= Φ

(
µ(xi) + γMk−1 − Ck−1

)
− Φ

(
µ(xi) + γMk −Ck

)
;

Pr
(
di = k | xi, z

M
i = 1, wM

i = 1
)
= Φ

(
µ(xi) + γMk−1 − Ck−1

)
− Φ

(
µ(xi) + γMk −Ck

)
.

No assumption about the distribution of V M has been invoked here, while we have identified

all parameters in the choice model needed to identify LATEs.
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C.2 Full Model Likelihood

In the full model we would additionally like to learn about what predicts take-up of

vouchers, and in particular, features of the joint distribution of (V, V S, V M), where V S and

V M denote unobserved variables influencing the cost-reduction to household i from a Section

8 and MTO voucher, respectively. To address these issues we invoke additional assumptions

about the joint distribution of (V, V S, V M). As demonstrated above, we add assumptions

about the joint distribution of unobservables only so that we can make some inference about

this distribution, not for the sake of identifying LATEs.

In the full model we will also add the standard Section 8 group to the estimation sample.

In order to do so, we introduce the random variables

ZS(i) : Ω → {0, 1}, the standard Section 8 voucher assignment; and

W S(i) : Ω → {0, 1}, an indicator for taking up the standard Section 8 voucher.

Take-up is now modeled as an endogenous variable, so the likelihood becomes

LL(θ) =
N∑

i=1

ln

(
Pr
(
di, w

S
i , w

M
i

∣∣xi, z
S
i , z

M
i

))

=
N∑

i=1

K∑

k=1

1{di = k} ln

(
Pr
(
di = k, wS

i , w
M
i

∣∣xi, z
S
i , z

M
i

))

=

N∑

i=1

K∑

k=1

1{di = k} ln

( 1∑

ωS=0

1∑

ωM=0

1∑

ζS=0

1∑

ζM=0

1{wS
i = ωS, wM

i = ωM , zSi = ζS, zMi = ζM}

× Pr
(
di = k, wS

i = ωS, wM
i = ωM

∣∣xi, z
S
i = ζS, zMi = ζM

))
.

In order to specify the Pr
(
di = k, wS

i = ωS, wM
i = ωM

∣∣xi, z
S
i = ζS, zMi = ζM

)
, we first

note that the selection equation in the text, Equation 1, in the full model becomes

DZSZM (i) = k ⇐⇒ (10)

Ck−1 −WZS(i)γS
k−1 −WZM (i)γM

k−1 ≤ µ(X(i))− V (i) < Ck −WZS(i)γS
k −WZM (i)γM

k .

Recall from the discussion of A2 in the text that to prevent always-takers, which would

require that some households take up a voucher without it first being assigned, we assume:

WZS(i) = 1{µS(X(i))− 1, 000, 000× (1− Z(i))− V S(i) ≥ 0} and (11)

WZM (i) = 1{µM(X(i))− 1, 000, 000× (1− Z(i))− V M(i) ≥ 0} (12)
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under the distributional assumption:

V(i) ≡
(
V (i), V S(i), V M(i)

)
∼ N







0

0

0


 ,




1 ρS ρM

ρS 1 ρSM

ρM ρSM 1





 . (13)

The marginal distributions implied by this joint distribution are as follows:

V (i) ∼ N (0, 1),

(V (i), V S(i)) ∼ N

([
0

0

]
,

[
1 ρS

ρS 1

])
, and

(V (i), V M(i)) ∼ N

([
0

0

]
,

[
1 ρM

ρM 1

])
.

In our data we observe that individuals are assigned at maximum one type of voucher

and take up at maximum one type of voucher (ie, zSi = 1 and zMi = 1 are mutually exclusive

as are wS
i = 1 and wM

i = 1). As well, in our data we do not observe any voucher take up

when not assigned a voucher (ie, wS
i = 0 for all i with zSi = 0 and wM

i = 0 for all i with

zMi = 0). This implies that for the sake of estimation we only need to specify one conditional

probability for the control group and two conditional probabilities for each voucher group.

Along with our parametric specification of the ordered choice model in Equation 10, the

take-up models in Equations 11 and 12 and the joint normality assumption in Equation 13

15



allow us to write the required conditional choice probabilities as:

Control Group

Pr
(
di = k, wS

i = 0, wM
i = 0 | xi, z

S
i = 0, zMi = 0

)
= Φ

(
µ(xi)− Ck−1

)
− Φ

(
µ(xi)− Ck

)

Section 8 Group

Pr
(
di = k, wS

i = 0, wM
i = 0 | xi, z

S
i = 1, zMi = 0

)
= Φ2

(
µ(xi)− Ck−1, −µS(xi); ρS

)

− Φ2

(
µ(xi)− Ck, −µS(xi); ρS

)

Pr
(
di = k, wS

i = 1, wM
i = 0 | xi, z

S
i = 1, zMi = 0

)
= Φ2

(
µ(xi) + γS

k−1 − Ck−1, µS(xi); ρS
)

− Φ2

(
µ(xi) + γS

k − Ck, µS(xi); ρS
)

MTO Group

Pr
(
di = k, wS

i = 0, wM
i = 0 | xi, z

S
i = 0, zMi = 1

)
= Φ2

(
µ(xi)− Ck−1, −µM(xi); ρM

)

− Φ2

(
µ(xi)− Ck, −µM(xi); ρM

)

Pr
(
di = k, wS

i = 0, wM
i = 1 | xi, z

S
i = 0, zMi = 1

)
= Φ2

(
µ(xi) + γM

k−1 − Ck−1, µM(xi); ρM
)

− Φ2

(
µ(xi) + γM

k − Ck, µM(xi); ρM
)
.

Note that the voucher group probabilities are similar to those in Equation 4 of Greene et al.

(2014).
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D Interpretation of Neighborhood Choice Model

Here we present a simple numerical example to illustrate why the probability of feasibly

entering into a Section 8 contract in a neighborhood of quality q is central to modeling

neighborhood selection in MTO, which is the reason we leave rents and housing prices out of

our model (See Collinson and Ganong (2018) for a related model.). The numerical example

also illustrates the interpretation of parameters of our ordered choice model in terms of some

of the factors driving the Marginal Benefit function for the Section 8 and Experimental

voucher groups.

Suppose that the benefit of living in a neighborhood of quality q is a weighted average

over a set of potential outcomes

B(q) =
∑

k

wkY k(q),

where, for example, one random variable Y k(q) is the social network one has access to when

living in a neighborhood of quality q.2 Additionally, let Pr(S8|q) be the probability of

feasibly entering into a Section 8 contract in a neighborhood of quality q. Then the expected

cost of living in a neighborhood of quality q is 30 percent of income if a household finds

Section 8 housing, and the expected market rent otherwise:3

E[C(q|ZS, ZM)] = 1{ZS = 0, ZM = 0} E
[
rent(q)

]

+ 1{ZS = 1, ZM = 0}

[
Pr(S8|q, ZS = 1)0.30× Income

+
(
1− Pr(S8|q, ZS = 1)

)
E[rent(q)]

]

+ 1{ZS = 0, ZM = 1}

[
Pr(S8|q, ZM = 1)0.30× Income

+
(
1− Pr(S8|q, ZM = 1)

)
E[rent(q)]

]

Thus the expected net benefit at any neighborhood quality q for Section 8 and experimental

voucher holders is:

E
[
NB(q|ZS, ZM)

]
= E

[
B(q)

]
−E

[
C(q|ZS, ZM)

]
,

2See Blume et al. (2011) for a related discussion on the importance of disrupting social networks for
housing mobility programs like MTO. Although we consider social networks and other outcomes as part of
the benefit of living in a neighborhood of quality q, we might just as easily categorize this outcome and
others as costs.

3Recall that ZS = 1 ⇒ ZM = 0 and ZM = 1 ⇒ ZS = 0.
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where

E
[
NB(q|ZS = 0, ZM = 0)

]
=E

[∑

k

wkY k(q)

]
−

[
E
[
rent(q)

]]

E
[
NB(q|ZS = 1, ZM = 0)

]
=E

[∑

k

wkY k(q)

]

−

[
Pr(S8|q, ZS = 1)0.30× Income +

(
1− Pr(S8|q, ZS = 1)

)
E[rent(q)]

]

E
[
NB(q|ZS = 0, ZM = 1)

]
=E

[∑

k

wkY k(q)

]

−

[
Pr(S8|q, ZM = 1)0.30× Income +

(
1− Pr(S8|q, ZM = 1)

)
E[rent(q)]

]
.

To illustrate the importance of the probability of entering a Section 8 contract, here we

consider a particular specification and parameterization of net benefit functions capturing

particular cost functions. Suppose E[B(q)] and E[C(q)] were both increasing functions of q,

with E[C(q)] rising faster than E[B(q)]. At low q, due to the 10 percent poverty restriction

they face, the MTO voucher group faces a restricted set of neighborhoods relative to the

standard Section 8 voucher group. The counseling offered to the MTO voucher group does

not offset this restriction, so Pr(S8|q, ZS = 1) > Pr(S8|q, ZM = 1) at these low levels

of q. As quality increases, though, the set of neighborhoods satisfying the experimental

restrictions starts getting closer to the full set of neighborhoods with Section 8 housing.

At some q̃, eligible neighborhoods become sufficiently similar so that due to the counseling

offered to the experimental group, the probabilities switch, and now it is actually the case

that Pr(S8|q, ZS = 1) < Pr(S8|q, ZM = 1) for q > q̃.
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Figure 3a shows two numerical examples of Pr(S8|q, ZS = 1) and Pr(S8|q, ZM = 1)

satisfying this qualitative description, and Figure 3b shows the resulting Marginal Benefit

functions.4 We can see that at low levels of quality, those holding the Section 8 voucher are

more likely to move to a higher quality neighborhood. However, at q̃, the MTO voucher

becomes more effective than the ordinary Section 8 voucher.

This numerical example highlights the flexibility and interpretation of our ordered choice

model, especially when Pr(S8|q, ZS = 1) and Pr(S8|q, ZM = 1) are not observed in the

data. The cost and marginal benefit functions in the model can very flexibly characterize

the effects of the Section 8 and MTO vouchers, in this example even allowing the effectiveness

of the programs to cross at some quality level q̃. In terms of the parameters of our model,

the {Ck} represent elements of both benefits E[B(q)] and costs E[C(q|ZS, ZM)] (regardless

of the values taken by ZS and ZM), while the {γS
k } represent elements of the cost function

E[C(q|ZS = 1)] only, and the {γM
k } represent elements of E[C(q|ZM = 1)] . We refer readers

interested in the interpretation of these parameters to the discussions on pages 72-78 and

139-150 of de Souza Briggs et al. (2010).
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